Generalisation of the twistor to Clifford algebras as a basis for geometry

نویسندگان

  • D. Bohm
  • B. J. Hiley
چکیده

In this paper, we generalize the Penrose twistor theory to a Clifford algebra. This allows basic geometric forms and relationships to be expressed purely algebraically. In addition, by means of an inner automorphism of this algebra, it is possible to regard these forms and relationships as emerging from a deeper pre-space, which we are calling an implicate order. The way is then opened up for a new mode of description, that does not start from continuous space-time, but which allows this to emerge as a limiting case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivations on Certain Semigroup Algebras

In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.

متن کامل

p-Analog of the Semigroup Fourier-Steiltjes Algebras

In  this paper we define the $p$-analog of the restericted reperesentations and also the $p$-analog of the Fourier--Stieltjes algebras on the inverse semigroups . We improve some results about Herz algebras on Clifford semigroups. At the end of this paper we give the necessary and sufficient condition for amenability of these algebras on Clifford semigroups.

متن کامل

Lorentzian twistor spinors and CR-geometry

In the present paper we study a relation between the Lorentzian twistor equation and CR-geometry. Besides the Dirac operator there is a second important conformally covariant differential operator acting on the spinor fields Γ(S) of a smooth semiRiemannian spin manifold (M,g) of dimension n and index k, the so-called twistor operator D. The twistor operator is defined as the composition of the ...

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

A general framework for geometric dualities for varieties of algebras

We set up a framework that subsumes many important dualities in mathematics (Birkhoff, Stone, Priestly, Baker-Beynon, etc.) as well as the classical correspondence between polynomial ideals and affine varieties in algebraic geometry. Our main theorems provide a generalisation of Hilbert’s Nullstellensatz to any (possibly infinitary) variety of algebras. The common core of the above dualities be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003